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The interaction of a dilute dispersed cloud of microbubbles with a planar free-shear
layer is investigated experimentally. The emphasis of this study is on the role of the
coherent large scales of the flow in the bubble dispersion field and the energy redis-
tribution within the carrier phase. The interphase momentum transfer integrals that
appear in the volume-averaged momentum and energy equations account for redistri-
bution of energy from potential to kinetic within the carrier phase. This results from
both the hydrostatic and dynamic pressure fields. The energy redistribution within the
carrier phase that is associated with the large-scale structures of the flow possesses
significant inhomogeneities within the mixing layer. Peaks of enhanced kinetic energy
generation are associated with the upwelling regions at the downstream edge of the
coherent vortex cores, and weaker peaks of kinetic energy destruction are associated
with downwelling regions. The contribution of the quasi-steady drag term to the total
energy redistribution is found to be dominant in only a limited region of the flow field.

1. Introduction
Understanding bubble–fluid interaction in turbulent flows is a keystone in the de-

velopment of models related to a wide variety of applications. Bubbles are introduced
into a flow field intentionally – as in chemical reactors – or inadvertently – as in
naval, nuclear reactor or oceanographic systems. Such bubble–fluid interaction often
occurs between the flow field and clouds of microbubbles (much smaller than typical
flow lengthscales) due to the low residence time of large bubbles. The highly complex
nature of the interface between the phases leads to the fact that transfer laws for
mass, momentum and energy are difficult to define, and therefore models of the flow
require the use of ad hoc or empirical closure approximations that may be difficult to
justify. More complete and detailed experimental characterization of the fundamental
interactions occurring in prototypical bubbly turbulent flows is important for the
further evolution of such models.

The importance of large-scale coherent vortical structures in the evolution and
entrainment of turbulent two-dimensional free-shear flows was recognized more than
two decades ago (Brown & Roshko 1974; Winant & Browand 1974). For a single
phase, such flow-fields are well understood and display fundamental characteristics
of an anisotropic, inhomogeneous turbulent flow. The interactions of a microbubble
cloud with the underlying large-scale structures of the free-shear flow form the basis
of this study.

† Present address: Dynamic Experimentation Division, MS P940, Los Alamos National Labora-
tory, Los Alamos, NM 87545, USA; pright@lanl.gov.
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Previous analytical and numerical work involving the dispersion of buoyant par-
ticles in free-shear layers (Tio et al. 1993a; Ruetsch & Meiburg 1993) has indicated
that the presence of the large-scale structures will dominate the dispersion of bubbles
throughout the shear layer. These studies also suggest that, due to the possible creation
of large local void fractions, the underlying flow field itself may be influenced – even
for dilute bubble clouds. Detailed experimental studies of the one-way and weak
two-way coupling of water droplets in air (Lázaro & Lasheras 1992a, b; Kiger &
Lasheras 1995, 1997) have demonstrated the fundamental role of a particle’s Stokes
number relative to the large scales in determining dispersion characteristics, and have
found peaks of interphase energy transfer away from the region of highest RMS.
Other experimental (Lance & Bataille 1991) and numerical (Elghobashi & Truesdell
1993; Druzhinin & Elghobashi 1998) studies noted effects of a dispersed buoyant
phase on the slope of the turbulent-energy spectrum at high wavenumbers, for bubble
sizes on the order of the Taylor microscale, as well as for microbubbles.

The complexity of the interface for all but the simplest multiphase flows requires the
consideration of averaged quantities. The most intuitive averaging method (especially
suited to dispersed flows) is volume-averaging (Soo 1989), in which a new lengthscale,
the mesoscale, is introduced. Such volume-averaging produces quantitatively similar
results to ensemble averaging (Drew 1983). The equations of motion are averaged over
this scale and closure comes either in an ad hoc fashion or from writing the influence
of the actual (complex) interface geometry in terms of mesoscale quantities. In order
for the averages over the mesoscales to be smooth functions of time and space, the
mesoscale must be larger than the characteristic length of the dispersed phase as well
as the interparticle distance. This study considers only dilute, dispersed systems which
indicates that the lengthscale of the dispersed phase must be much smaller than the
interparticle spacing. Also, for the averaged equations to be meaningful, the mesoscale
must resolve the evolution of the flow and thus be sufficiently small compared to the
typical flow lengthscales. These restrictions of scale lead to the requirement that

Db � Db

α1/3
� LMeso � L, (1.1)

where Db is a typical dispersed-phase lengthscale (e.g. a bubble diameter), L is a
representative flow lengthscale, and α is the volume fraction of the dispersed phase
(and therefore Db/α

1/3 is a typical interparticle distance). This set of restrictions leads
to an upper limit on the typical size of the dispersed phase and to both upper and
lower limits on the applicable volume (void) fraction, the latter resulting from the fact
that, for representative averages to be computed, sufficient numbers of the dispersed
phase must be present (Lázaro & Lasheras 1992a, b).

Besides satisfying (1.1), small spherical bubbles are also amenable to the application
of powerful modern diagnostics, primarily applied to particulate flows up to this time.
These diagnostics enable us to characterize the bubbles according to both their size and
velocity, and to conditionally average the results to create an ensemble of the two-way
coupling between the dispersed phase and the coherent structures of the carrier flow.

2. Experimental facility and diagnostics
2.1. The facility

A schematic diagram of the two-layer water channel developed for this study is shown
in figure 1. Pumps draw from a large reservoir of water, supplying two head tanks
placed on a tower near the inlet to the flow facility. These tanks provide a gravity
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Figure 1. Schematic of recirculating water tunnel facility. The tip of the splitter plate is the
origin of the (x, y) coordinates with x, the streamwise coordinate, positive downstream, and y, the
cross-stream coordinate, positive upward.

feed to the facility while maintaining a constant head. The arrangement enables the
water channel to be isolated from the vibrations associated with the supply pumps
and to be finely controlled by gate valves. The water channel entrance region is
filled with a coarse, open-cell filter foam to damp surface waves. The upper layer is
maintained at a lower speed than that of the lower layer and is not laden with bubbles,
allowing turbulence-management hardware to be placed there. This hardware consists
of a honeycomb flow-straightener, a screen and a 3 : 1 area contraction. Bubbles are
injected near the channel entrance in the lower stream, minimizing test-section flow
disruption. This precludes a honeycomb or screen being placed within the lower stream
as these accumulate bubbles and are detrimental to flow conditioning. Holding tanks
at the outflow of the tunnel allow the bubbles time to rise to the surface and be
removed so that the bubbles are not recirculated.

The arrangement of the fast stream below the slow stream as well as the placement
of the bubbles in the lower stream was necessitated by practical matters. Due to their
rise rate, the bubbles were placed in the lower layer so that, when in the test section,
the region of the flow nearest the splitter plate would not be free of bubbles. When
the lower layer was run at low speeds, significant influence of bubble generation and
removal of the flow-control hardware was measured at the test section. In this case
the spanwise velocity profile was not flat and the relative turbulence level in the lower
stream was very high. This was not the case when the lower stream was run at higher
velocities.

Fundamentally, the results of this study would not change if the high-speed stream
were the upper layer, and the bubbles were injected in the lower slow-speed stream.
This is due to the fact that the shear layer is relatively symmetric (although not
entirely). For instance, since the shear layer tends to grow into the low-speed stream,
the movement of bubbles vertically upward across the shear layer with the high-speed
stream on top would be slightly retarded. This would make only slight quantitative
changes in the results presented here.

The flow rate of the lower stream is perturbed sinusoidally by bellows attached
to a loudspeaker driven by a function generator and amplifier. The perturbation
takes the form of a small cylindrical plug of water being moved into and out of the
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lower stream, and amounts to ≈ 0.5% of the layer’s volume flux. The fact that the
disturbance grows from a small cylindrical region well upstream of the actual mixing
layer to encompass the entire spanwise extent of the test section has been verified in
an earlier study (Schowalter 1993).

The design requirements for generation of the microbubble clouds were severe: (i)
the bubble size distribution must obey the restrictions of scale required for mesoscale
averaging detailed in (1.1); (ii) the bubbles should all be smaller than any of the
flow lengthscales (i.e. Kolmogorov scale) in order for the equation of motion for an
individual bubble to be applicable; (iii) the bubble size distribution must be such that
the bubbles are not so large that their rise velocities dominate all flow velocities; (iv)
the Weber number of each bubble must remain small throughout the flow field, so
that the bubbles will act as rigid and spherical inclusions throughout the test section,
enabling optical sizing methods; (v) the bubble generation method must not generate
considerable velocity or void fraction inhomogeneities in the laden stream within the
test section; and (vi) the bubble generation method cannot significantly change the
temperature or other optical properties (e.g. index of refraction) of the laden stream
which would then impair the accuracy and applicability of optical flow diagnostics.

A novel bubble-generation device based on the sudden expansion of carbonated
water is used. Carbonated water for the experiment is produced by an off-the-shelf
soda carbonator. This system pumps deionized water through an atomizer into a
chamber pressurized with CO2 gas. The high surface area of the spray ensures that
the water is nearly saturated as it collects at the chamber bottom – a floating switch
controls the flow of water into the system. A siphon line then removes the water from
the carbonator. In order to eliminate time-dependent bubble generation and to allow
larger void fractions than are otherwise possible, it is necessary to utilize a large-
volume, constant-pressure carbonated water reservoir. The water in the reservoir never
experiences a significant or sudden pressure drop until it reaches the end effector of
the bubble generator. The outlet from this vessel was sized so as to prevent sufficient
pressure drops that could result in voids forming in the supply line prior to the bubble
generator. Also, using non-carbonated water in this reservoir allows duplication of
inlet conditions without production of bubbles.

The carbonated water supply feeds a 6.4 mm plenum tube at the bubble generator.
From the plenum tube, 20 small (1.6 mm diameter) tubes spaced 25 mm apart extend
perpendicularly into the channel. Each of these has four 0.33 mm (#80 wire gauge)
holes drilled at 25 mm intervals along its length. The result is an array of micro-
nozzles extending uniformly over the cross-sectional area of the channel prior to the
contraction. As the carbonated water flows out of these nozzles, the resulting sudden
negative pressure step causes homogeneous nucleation of CO2 bubbles. Rapid mixing
with the surrounding, non-carbonated water freezes growth of the bubbles and limits
the range of possible bubble sizes.

A summary of the pertinent parameters for this study is presented in table 1.

2.2. Diagnostics

The ideal diagnostic for examining this developing flow would provide instantaneous
characterizations of the velocity fields of both phases, as well as the dispersion
field (including size information) of the dispersed phase over a large field of view.
Unfortunately such a diagnostic does not exist in a practical sense. Therefore, in
order to provide a detailed characterization of the interaction of the dispersed phase
with the large, energy-containing scales of the flow, we utilize conditional averaging
techniques in association with point-wise measurements.
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Lower free-stream velocity, U1 28 cm s−1

Upper free-stream velocity, U2 6 cm s−1

Mean convective velocity, U = 1
2
(U1 +U2) 17 cm s−1

Perturbation frequency, f 2.1 Hz
Wavelength of Kelvin–Helmholtz billows, U/f 8 cm
Sauter mean diameter of bubbles, D32 50 µm
Lower free-stream void fraction, α 1× 10−5

Typical inter-bubble distance, D32/α
1/3 ≈ 2 mm ≈ 50× D32

Bubble Weber number, We = D32ρwU
2/σ 0.02

Table 1. Experimental parameters.

It is well known that large-scale Kelvin–Helmholtz billows dominate the dynamics
and entrainment of planar free-shear layers (Brown & Roshko 1974; Winant &
Browand 1974; Dahm & Dimotakis 1987). It has been seen in several studies (Ho &
Huerre 1984; Hussain & Zaman 1980, among others) that forcing the two-dimensional
instability can considerably increase the coherency of these large-scale structures.
In a study of the developing region of the planar free-shear layer, the dominant
nature and repeatability of these large coherent scales in the entrainment and mixing
provides a way to produce a complete characterization of the dispersion and velocity
fields of both phases through the implementation of conditional sampling techniques.
Knowledge is gained of the interactions of the bubble cloud with an ensemble average
of such structures. Unfortunately, interactions with smaller scales cannot be quantified
with conditional sampling.

These conditional averaging techniques have been found to provide useful informa-
tion regarding the evolution and dynamics of a variety of free-shear flows (Hussain
& Zaman 1980; Antonia 1981; Browand & Weidman 1976) as well as information
regarding particle/gas interactions in planar free-shear layers (Lázaro & Lasheras
1992b; Kiger 1995). Briefly then, this averaging concept breaks the instantaneous
realizations of any measured physical quantity, ψ(x, t), in the flow field into three
contributions;

ψ(x, t) = ψ(x) + ψ̃(x, t) + ψ′(x, t). (2.1)

These contributions are due to the slowly varying time-average value, ψ(x), the
periodic fluctuations, ψ̃(x, t) (for instance, those fluctuations occurring regularly at
the forcing frequency and its harmonics), and the random fluctuations (or any
fluctuation that is not periodic with the forcing function or its harmonics), ψ′(x, t).
The time-average value is defined in the way of traditional turbulence analysis as

ψ(x) =
1

T

∫ T

0

ψ(x, t) dt (2.2)

for some suitably large value of T .
The conditional average used in this study represents the value at a particular

location within the forcing period averaged over several periods or structures. For
evenly-spaced data, such averaging is easily calculated for each sampling point within
a period. However, when the data are obtained at random times (as is the case with
PDPA data), the conditional average is computed for bins of finite phase within the
forcing period, rather than at a particular point in phase space.

The forcing period, Tf = f−1 where f is the forcing frequency, is divided into
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Nb phase bins, each of width ∆t = Tf/Nb. Therefore, the conditional average of a
physical quantity, ψ(x, t), within phase bin ti is

〈ψ(x, ti)〉 =
1

Ni

Ni∑
1

ψ(x, ti − 1
2
∆t < t < ti + 1

2
∆t), (2.3)

where Ni is the total number of points (over all structures) falling within the phase
bin and ti = (2i− 1)(∆t/2) for i = 1, 2, . . . , Nb.

This phase-average value 〈ψ(x, ti)〉 is then equal to the sum of the mean and
periodic contributions, i.e. 〈ψ(x, ti)〉 = ψ(x) + ψ̃(x, ti − ∆t/2 < t < ti + ∆t/2) (Hussain
& Zaman 1980). This means that the difference between the instantaneous signal
and the phase average is due to the effect of random fluctuations (or, at least, all
fluctuations that are not periodic with the forcing frequency or its harmonics), and the
difference between the mean and phase average is the result of periodic fluctuations
(i.e. fluctuations occurring at the forcing frequency and its harmonics – up to the limit
of the finite bin resolution).

Due to the conditional averaging employed, the mesoscale is associated with the
phase bins defined in the averaging technique. This allows the use of a point-wise
measurement to provide a complete characterization of the velocity fields of both
phases as well as the size and dispersion field of the dispersed phase without having
poor statistics due to a small number density of the bubbles. Instead we can average
over a sufficient number of the passing large-scale Kelvin–Helmholtz billows to
produce good statistics at every point in the flow.

The geometry of the line-of-sight laser attenuation instrument used to estimate
bubble void fractions is shown in figure 2. This well-characterized technique (Lázaro
1989; Kiger 1995; Rightley 1995) takes the output of a low-power (5 mW) helium-neon
laser, passes it through a spatial filter (pinhole), a beam expander and a 3 mm circular
orifice, and measures the resulting intensity of the beam after passing through the test
section (with and without bubble injection) with a single photodiode (United Detector
Technology, PIN-6D shielded by a 5.012% transmittance Melles Griot neutral density
filter) on the opposite side. The output of the photodiode is amplified and low-pass
filtered before being digitized by a LeCroy 8212A Data Logger.

For pure scattering through a homogeneous medium, it is possible to write down
Bouguer’s extinction law (Van de Hulst 1957; Siegel & Howell 1981) as

I

I0

= e−ΓL ⇒ ln (I/I0) = −L∑
i

Ni

πD2
i

2
, (2.4)

where I/I0 is the ratio of the intensity falling on the photodiode with and without
the presence of the dispersed phase, Γ is the total extinction cross-section per unit
volume in the medium and L is the path-length through the medium.

Introducing the instantaneous probability density function, f(Di), which represents
the fraction of the total dispersed-phase volume occupied by size class Di, it is
convenient to write the number concentration of bubbles of size class Di as

Ni = α
f(Di)(
1
6
πD3

i

) , (2.5)

where α is the volume concentration (i.e. void fraction) of bubbles. Using (2.5) in
(2.4) yields an expression relating the measured value of the ratio of intensities to
geometric parameters, the void fraction and the size distribution of the dispersed
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Figure 2. Geometry of line-of-sight measurement instruments: laser attenuation/void fraction
measurements and diffraction particle sizing.

phase:

ln
I

I0

= −3Lα
∑
i

f(Di)

Di
= −3Lα

D32

, (2.6)

where

D32 =
(∑

i

NiD
3
i

)/(∑
i

NiD
2
i

)
(2.7)

is the Sauter mean diameter of f(Di). Therefore, the local spanwise-averaged void
fraction can be calculated from knowledge of the ratio of beam intensities at the
photodiode and the local, instantaneous size distribution (Lázaro & Lasheras 1992a, b;
Kiger & Lasheras 1995; Rightley 1995).

The recent advances in optical particle-sizing technologies have allowed the study
of multi-phase flow fields in much greater detail. However, the bulk of the data that
have been obtained using and validating these methods have been for particle/gas
flows. Two independent sizing methods were investigated: (i) laser-diffraction particle
sizing using low angle scattering, and (ii) phase Doppler anemometry (PDPA) using
high angle scattering to verify the sizing accuracy of the two instruments. The detailed
comparison of the two instruments is presented elsewhere (Rightley 1995).

The geometry of the Malvern 1200HSD laser diffraction particle-sizing instrument
is similar to that for laser attenuation (see figure 2), except that the receiver uses a
Fourier transform lens and an array of concentric semicircular photodiodes to acquire
data. Details of operation and analysis can be found in several sources (for example
see Rightley 1995).

The installation of the Aerometrics phase Doppler instrument for this study is
depicted in figure 3. This instrument was in a 63◦ forward-scatter arrangement
utilizing the reflection mode dominant at this angle. The output of an Ion Lasers,
Inc. Ar+ laser (total power in both blue and green lines is approximately 700 mW)
is driven through a set of fibre optic cables to the 250 mm focal length transmitting
lens. The receiver also utilizes a 250 mm focal length lens as well as fibre optic cables
to channel the scattered light to the remote photo-multiplier tubes (PMT).

The Aerometrics PDPA system has been calibrated to measure the velocity and
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Figure 3. Geometry of PDPA measurements. The receiver is positioned to receive 63◦ for-
ward-scattered light. The prism is used to minimize the distortion of the probe volume seen
by the receiver by creating an interface perpendicular to the line-of-sight.

size of spherical particles at several discrete scattering directions. The most useful
for studying bubbles is the 63◦ forward-scattering position. In this position, we are
forced to look through the free surface of our water channel. To eliminate the motion
of the free surface and the effective distortion resulting from looking through an
interface between materials of different refractive index at an angle, we placed a
prism on the free surface of the water channel. When investigating bubbly flows, the
air–water interface acts approximately as a cylindrical lens when viewed at an angle.
To remove the distortion of the probe volume caused by this, both the transmitter and
receiver need to be oriented perpendicular to air–water (or air–Plexiglas) interfaces
(Aerometrics 1994).

Three PMTs (and their necessary burst analysers) are used in the direction of the
green beams, providing the spatial frequency needed to determine size, and a fourth
PMT is devoted to the cross-stream velocity. The nominal probe volume of this
arrangement is an ellipsoid with axes of approximately a = b = 80 µm and c = 2 mm.
However, the PDPA receiver utilizes a spatial filter (slit), reducing the volume to an
approximately cylindrical shape with dimensions 80µm × 80 µm × 300 µm. Effective
probe volume size, however, depends on several factors including individual particle
size and whether both components of velocity are being investigated simultaneously
(due to imperfect alignment of four beams through the Plexiglas walls of the water
channel). A more complete discussion of these issues is presented elsewhere (Rightley
1995).

Briefly, it is found that the comparison for the volume mean diameters measured
by the PDPA and the laser-diffraction particle sizer agree very well, generally within
5% or less. The Sauter mean diameters measured by the two techniques agree to
within 10%. Using measured values of the attenuation parameter, ln (I0/I), from the
laser attenuation instrument with the measured size distribution from both the PDPA
and the diffraction particle-sizing instrument, we estimate the void fraction in the
free stream at the end of the splitter plate to be 1.0 × 10−5 with an uncertainty of
12% (Rightley 1995). Since there is not significant size segregation of the bubbles
within the flow field, the attenuation parameter will be related by a constant to the
void fraction of bubbles everywhere in the flow from equation (2.6). We will present
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measured values of the attenuation parameter, not estimates of the local void fraction,
throughout this paper.

One can characterize the dynamics of several size classes of bubbles in one test
when working with a polydispersed size distribution, provided the means exist to
distinguish between the particles based on size. Furthermore, conditional averaging
allows the study of the dynamics of the various size classes of bubbles with respect to
the large energy-containing scales of the carrier phase. In generating the conditional
averages, the time series of bursts acquired by the PDPA system is broken into several
phase bins corresponding to different locations within the period of the perturbation.
This, combined with the necessity to classify the bubbles into discrete size families or
bins, limits the number of bursts over which averages can be performed. In turn, this
leads to a commensurate increase in the statistical uncertainty of the mean estimates.
It is therefore important to guarantee statistically reliable averages for each size class
in every bin.

The smallest size class of bubbles is used to characterize and generate averages for
the carrier-phase velocity field. This size class is conservatively required to respond
faithfully to fluctuations up to 150 Hz. We find through a spectral analysis of the
equation of motion for bubbles in a turbulent carrier (Hjelmfelt & Mockros 1966)
that only bubbles smaller than 20 µm can be used. This stringent size limitation
leads to a problem in obtaining sufficient statistical convergence of the carrier-phase
averages due to the small number of the smallest bubbles.

In order to solve this problem, seed particles of the smallest size class were added
to the flow field. The requirements on these particles are stringent: (i) they must
be able to follow flow fluctuations (and therefore must have a density close to that
of water); (ii) they must be distinguishable by size with the PDPA (and therefore
must be spherical); and (iii) in order for simultaneous measurements of bubbles
and seed particles to be made, the particles must have optical scattering properties
very similar to bubbles (so that the reflective mode dominates and the PMTs do
not saturate measuring one phase or the other). The addition of spherical hollow
glass spheres (Potter’s Industries, Inc. Sphericel 110P8) of sizes that would fit almost
entirely into the carrier-phase size class alleviates this statistical convergence problem.
The glass–air interface in the interior of these particles does scatter light in a way
nearly identically to that of bubbles, and they were able to be sized accurately by the
PDPA.

Figure 4 shows two number/size histograms obtained from the PDPA system for
both the seeding particles and the bubbles alone. A summary of the pertinent numbers
for each of the discrete size classes considered from each of these p.d.f.s is presented
in table 2. As averages of the particles within the ‘fluid’ size class (assumed to closely
follow the fluctuations of the carrier phase) are of fundamental importance to this
study, the statistical convergence of these averages over the smallest particles must
be adequate. As can be seen from figure 4 and table 2, the bubbles alone do a poor
job populating the smallest size class, whereas the added Sphericel seed falls nearly
entirely into this size class.

The amount of seeding added was determined by the requirement to have sufficiently
converged statistics for the fluid size class. The amount of seeding was controlled
by adding a set amount of Sphericel to the supply tanks (approximately 1 teaspoon
per 500 gallons) and then running the system with complete recirculation to ensure
complete mixing. The small size, small volume fraction (relative to the bubble cloud)
and neutral density of the seeding particles indicate that any influence on the carrier
phase is significantly smaller than that of the dispersed phase.
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Figure 4. Number histograms from PDPA measurements at x = 10.0 cm, y = −20.0 mm for
hollow glass spheres (Sphericel) without bubbles present (— —) and for bubbles alone (——).

Fluid Bub. size class 1 Size class 2 Size class 3 Total
0 < D < 20 µm 20 < D < 35 µm 35 < D < 65 µm 65 µm < D bursts

Sphericel 5695 426 131 41 6293
Bubbles 2870 4424 2996 428 10718

Table 2. Contributions of size classes to burst counts over 10 minutes of sampling with the PDPA.
Sphericel contributes less than 10% of the counts associated with bubble size classes 1, 2 and 3, yet
contributes 66% of the bursts in the fluid size class.

3. Results
3.1. Mean carrier-phase evolution

Figure 5 shows the mean profiles of the streamwise velocity from PDPA measurements
with Sphericel seed and no bubble injection at various downstream locations. The
free-stream velocities are repeatable to 5% for the lower (faster) stream and 10% for
the upper stream. This variation occurs between the profiles in figure 5, not within
each profile. Our phase-averaged results utilize the data from individual profiles
and therefore will not exhibit large repeatability errors. However, repeatability will
introduce errors of from 5% to 10% in individual values involving the evolution of
quantities downstream. The repeatability of the carrier-phase flow field in the water
channel is adequate. Both free-stream regions exhibit flat mean velocity profiles.

The evolution of the level thickness of the streamwise velocity profiles is character-
ized by the presence of two distinct regions: a nonlinear initial development followed
by a linear spreading region downstream of x/λ = 1.25, x = 10 cm (where λ is the
most unstable wavelength – and the billow-to-billow distance – 8 cm). Such evolution
is typical of the developing region of forced planar mixing layers (Lázaro 1989), but is
distinct from the two-region growth seen in studies including the self-similar far field
(Liepmann & Laufer 1947; Wygnanski & Fiedler 1970). We define the streamwise
momentum integral thickness as

δIu =

∫ ∞
∞
z(y)[1− z(y)] dy, (3.1)
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Figure 5. Streamwise (a) mean and (b) RMS velocity profiles for ——–, x/λ = 0.31;
−− −−, x/λ = 0.63; — · —, x/λ = 1.25; —– —–, x/λ = 1.88; and — · · —, x/λ = 2.50.

where z(y) = (u(y) − u(∞))/(u(∞) − u(−∞)) is the non-dimensional velocity profile
normalized with the free-stream velocities. Likewise, we define the level thickness for
longitudinal momentum spreading as

δLu = y(z = 0.1)− y(z = 0.9). (3.2)

Fits to the data observed in this study in the linear spreading region are

δLu = 0.134x+ 9.1 and δIu = 0.021x+ 3.3 (3.3)

for δLu, δIu and x in mm. The slope for the level thickness falls on the upper edge of
the scatter for the predicted asymptotic growth rate for these free-stream velocities
(Weisbrot, Einav & Wygnanski 1982), while the slope of the integral thickness is nearly
identical to the far-field growth in another study with similar velocities (Browand &
Latigo 1979). Note, however, that forcing the flow significantly enhances growth rates
(Lázaro 1989), allowing erroneous interpretations of the flow as self-similar based
solely on growth rates.

The computed integral thickness at the measurement station closest to the tip of
the splitter plate (i.e. the first station to indicate the complete disappearance of the
wake component in the profiles), δIu0

, is used as an estimate of the initial momentum
thickness. For this study δIu0

≈ 2.5 mm. The farthest downstream location considered
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Figure 6. Influence of a small single-wavelength perturbation in the lower layer on the streamwise
energy spectrum for x/λ = 1.25 (a) without forcing and (b) with forcing.

in this study occurs at a non-dimensionalized distance of x/δIu0
≈ 80. A significant

body of research (see, for example Weisbrot et al. 1982; Hussain & Zedan 1978)
indicates that the transition to the linear, asymptotic growth rate of the self-similar
flow far field occurs for x/δIu0

= 200–600 (for unforced flows). Therefore, this study
is wholly confined to the developing region of the mixing layer.

The RMS profiles for the streamwise velocity are presented in figure 5(b). All of
the profiles display only a single peak – a result commonly found for relatively high
velocity ratios such as was used in this study (Liepmann & Laufer 1947; Rightley &
Lasheras 1996; Lázaro 1989), but different from the two-peaked RMS profiles seen
near the tip of the splitter plate for lower velocity ratios but in similar experimental
facilities (Winant & Browand 1974; Lasheras, Cho & Maxworthy 1986).

The influence of the low-amplitude forcing system on the streamwise velocity power
spectrum is shown in figure 6. No band of frequencies preferred by the shear layer
can be discerned from the spectrum presented in the figure in the absence of forcing.
However, a perturbation of the high-speed stream with very small amplitudes at f ≈
2.1 Hz is seen to greatly increase the coherence of the large-scale (Kelvin–Helmholtz)
structures as represented by the large spike introduced into the spectrum. Inviscid
linear stability theory of nearly parallel flows provides the formula St = fnδIu0

/U =
0.032, where St is the Strouhal number and fn is the natural frequency (Monkewitz &
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Figure 7. Streamwise velocity mean and RMS with and without bubble injection for (a) x/λ = 0.63
and (b) x/λ = 2.50. The solid lines and symbols are the mean velocity profiles without and with
bubble injection, respectively. The dashed lines and open symbols are the RMS profiles without
and with bubble injection, respectively.

Huerre 1982). The choice of downstream station to be used in determining the value
of δIu0

appropriate for this formula requires that the wake component of the velocity
profile has completely disappeared and is therefore somewhat tenuous (Ho & Huerre
1984). Using δIu0

= 2.5 mm and U = 1
2
(28.8 + 6.0), we find fn ≈ 2.2 Hz. This explains

the receptivity of the shear layer to small-amplitude forcing at this frequency.

3.2. Influence of bubbles on mean carrier-phase evolution

Little effect of the presence of the dispersed phase is seen on the mean and RMS
streamwise velocity profiles of figure 7. The duplication of the inlet conditions was
accomplished through the use of the water reservoir and bubble generator injecting
either carbonated or non-carbonated water.

Graphs of the influence of the bubble cloud on the mean vertical (cross-stream)
velocity profiles are presented in figure 8. Here, an effect is noticeable on the mean
values of the cross-stream (vertical) velocity component. The mean vertical velocity
is greater everywhere in the presence of bubble injection than without it. However,
the RMS profiles are not significantly different with or without bubble injection.
Therefore, the bubbles’ impact on the mean vertical velocities indicates an increase in
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Figure 8. Vertical velocity mean and RMS with and without bubble injection for (a) x/λ = 0.63
and (b) x/λ = 2.50. The solid lines and symbols are the mean velocity profiles without and with
bubble injection, respectively. The dashed lines and open symbols are the RMS profiles without
and with bubble injection, respectively.

the kinetic energy, EK , of the flow field, but not of the fluctuations as measured by
the RMS.

Note that these profiles possess the same shape as those presented by Liepman &
Laufer in their seminal 1947 experimental paper on free-shear layers. The fundamental
difference is that the experimental velocity profiles under discussion here are entirely
positive with no regions of negative flow, whereas Liepman & Laufer’s results showed
such regions. Such similarities of velocity profile shapes would indicate strongly that
the experimental measurements are essentially correct, but with a positive offset
velocity. This offset is due to a small drift in the PDPA’s Bragg cell frequency. The
Bragg cell is used to shift one of the beams of the PDPA by 40 MHz in order to
eliminate directional ambiguity.

The full-scale reading for the measurements of the vertical velocities was approx-
imately 1 m s−1 (due to limitations of the PDPA instrument). The offset velocity
apparent in the mean vertical velocity profiles (when compared to the profiles from
Liepman & Laufer) is approximately 4 mm s−1. This represents a systematic error of
0.4% of full-scale. The PDPA used to make the measured mean vertical velocity pro-
files used a variable Bragg cell. The Bragg cells typically used in LDA systems cannot
easily be controlled to better than this accuracy without using a fixed-frequency cell.
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To reduce the effect of this drift to the minimum possible, the operating temperature
of the instrument was ensured to be the same each day that data were taken.

While a systematic error of 0.4% of full-scale is a small error for velocity measure-
ments, when compared to the small velocities present in the cross-stream direction, it
becomes significant. The effect of this error is systematic, however, and it does not
affect the overall shape of the velocity profile. Small systematic errors like this can be
eliminated by shifting of the data in one direction or the other. We wish to present the
data as measured to the greatest extent possible. A shift of approximately 4 mm s−1 in
the vertical velocities will slightly intensify the total EK destruction regions (presented
later) and slightly reduce the total EK generation regions. The results for the EK
generation due to the drag term will remain the same.

The difference between the mean vertical velocities with and without bubble in-
jection can be seen to be in the range of 5–10 mm s−1. From rise rate data, only
the largest bubbles (i.e. Db ≈ 100 µm) have terminal rise velocities comparable to
5 mm s−1. The largest size class of bubbles does not account for a majority of the
water displaced by the bubble cloud. Thus, the terminal rise velocity of the bubbles
representing a majority of the displaced mass of carrier-phase fluid is significantly
lower than 5 mm s−1. Therefore, instantaneous carrier-phase entrainment associated
with the terminal rise rates of the bubbles (or cross-talk between bursts from the
larger bubbles and those representing the carrier phase in the averages) is insufficient
to account for the measured increase in the mean vertical velocity.

Consider a unit volume in the bubbly free stream and suppose that the volume of
the carrier fluid occupied by the bubbles (which, for a unit volume is represented by
the free-stream void fraction, α) ‘falls’ some distance ∆z. For this volume, the change
in EK and potential energy, EP , (considering only the vertical velocity component, v)
can be written as

∆EK = 1
2
(1− α)ρw|∆v|2 and ∆EP = αρw|g|∆z. (3.4)

For the small void fractions present in this study, the energy balance can therefore be
approximately expressed as

αρw|g|∆z = 1
2
ρw|∆v|2 ⇒ αg∆z = 1

2
(∆v2). (3.5)

For a change in vertical velocity of ∆v = 5 mm s−1 = 0.005 m s−1 (say, from rest to
an approximate terminal rise velocity), and taking the measured free-stream value of
α = 1.5×10−5, we find ∆z ≈ 8 cm. The time it takes for the bubbles to travel from the
bubble injector to the tip of the splitter plate is approximately 30 s. In this amount of
time, a 70 µm bubble – which would be in largest size class – could settle ≈ 8 cm based
on its terminal rise velocity. The energetics of the flow field make it look feasible for
the increase in the mean EK of the carrier-phase velocity field to come from the loss
of EP due to bubble settling. However, this would also suggest that more significant
inhomogeneities are present in the lower-free-stream void fraction than are observed.

3.3. Mean dispersed-phase evolution

Time-averaged 90◦ light-scattering flow visualization of the mixing layer both with
forcing and without is depicted in figure 9. The tip of the splitter plate is at the left
edge of both images and the farthest downstream extent is approximately x/λ = 2.5.

For the case with forcing, the upper edge of the shear layer can be seen to grow
slowly in an induction region immediately downstream of the splitter plate, followed
by a more rapid growth rate. After this region of high growth, an inflection point
signifies a slowing of the growth rate in the region far downstream of the splitter
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Figure 9. Time-averaged flow visualization using 90◦ scattered light for the (a) forced and (b)
unforced experiments. The tip of the splitter plate is at the left edge of both images and the
downstream extent is about x/λ = 2.5. The region denoted I is the initial induction region, while
regions II and III are high- and lower-growth-rate regions, respectively.

plate. As expected for the lateral spread of the carrier-phase velocity field (Dimotakis
1987), the growth of the global bubble dispersion field is directed primarily into the
slow-speed stream – which results from the preferential entrainment of fluid from the
high-speed side of such mixing layers.

The time-averaged flow visualization of the void fraction evolution for the un-
perturbed mixing layer illustrates that the lateral spread of the bubble cloud is
significantly reduced compared to the layer with perturbation. However, the initial
induction and positive sign of curvature regions appear to extend similar distances
downstream, followed by an inflection point and a commensurate slowing of the
growth rate.

Due to the non-uniform illumination in both the horizontal (due to the light
placement) and vertical (due to extinction by the bubble cloud) directions, flow visu-
alization is primarily useful in this investigation only for the qualitative information
presented above. A more quantitative measurement utilizes a line-of-sight attenuation
instrument. Figure 10 presents the measured time-averaged profiles of the attenuation
parameter, ln (I0/I), at several downstream measurement stations after normalizing
each of the profiles by the value occurring within the lower free stream (i.e. at
y = −30 mm). Notice the appearance of the relatively depleted layer adjacent to the
lower free stream at the two farthest downstream measurement stations. This layer
is characterized by a significant change in the sign of curvature of the profiles within
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Figure 10. Normalized mean attenuation parameter, ln (I0/I), profiles for ——–, x/λ = 0.31;
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parameter is related to the spanwise-averaged void fraction through Bouguer’s law. Notice the
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Figure 11. Comparison of level thickness growth rates: (a) ——, velocity; and — —, attenuation
parameter level thicknesses; (b) the difference in level thicknesses between the attenuation and
velocity fields.

the mixing layer near the lower free stream at x/λ = 1.88 and 2.5. This change is
noticeable to a much lesser degree at x/λ = 1.56 downstream.

The 10%–90% level thickness measure of the lateral spreading of the bubble
dispersion field (figure 11) displays a more rapid growth than that of the mean
carrier-phase streamwise velocity profiles. The growth rate of the global void fraction
field follows that of the carrier-phase velocity field closely in the initial induction
region just downstream of the tip of the splitter plate. Beyond x/λ = 0.63, the
downstream growth rate of the attenuation field increases until approximately the
x/λ = 1.25 measurement station. Between these same stations, however, the spreading
rate of the carrier-phase velocity field is already slowing. After the measurement
station at x/λ = 1.25, the growth rate of the attenuation also begins to slow, although
it remains greater than the lateral spreading rate of the mean streamwise velocity
profiles at all downstream locations. This demonstrates that the bubbles are not
acting simply as fluid markers, but that relative motion between the phases can be
appreciable. The energetics of this non-negligible slip velocity will be discussed later.
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x/λ = 0.63; — · —, x/λ = 1.25; —– —–, x/λ = 1.88; and — · · —, x/λ = 2.50.

The difference between the level thicknesses of the mean carrier-phase streamwise
velocity profiles and the mean bubble void fraction profiles at each downstream
station is also presented in figure 11. A region of significantly enhanced bubble
dispersion (compared to the spreading of the streamwise velocity profiles) is distinctly
seen from x/λ = 0.63 to x/λ = 1.88. In this region, the void fraction field grows
(16.5 − 2.2)/(15.0 − 5.0) = 1.43 mm per cm of distance downstream. Since the bulk
of the level thickness growth is into the upper stream, it makes sense to scale
δL(Attenuation) − δL(u) on the upper-free-stream velocity, U2 = 6 cm s−1. The rise
velocity of the cloud needed to account for this difference in the level thicknesses as
the flow progresses downstream is VTEff

= 1.43× 6 = 8.6 mm s−1– a value more than
1.5 times greater than the rise rate of the largest size bubbles present in the flow field.

After this region of significant enhancement of the void fraction field lateral
spreading rate, another region appears in which the growth rate of the bubble
dispersion field is still greater than that of the carrier-phase velocity field, but the
rate of the divergence of the two curves has decreased. The effective rise rate needed
in this region to describe the rate of change of the spreading of the attenuation and
velocity fields is VTEff

= (18.2− 16.5)/(20.0− 15.0)× 6 = 0.34× 6 = 2.04 mm s−1. This
rise rate corresponds to that of an individual bubble of Db = 61 µm which is within
the measured size range under consideration.

Therefore, we see that an initial induction region exists just downstream of the tip
of the splitter plate where the growth rates of the attenuation and carrier velocity
fields are similar, followed by a region of considerably enhanced dispersion of the
bubble cloud. In this region, the growth rate of the attenuation field exceeds that due
solely to the rise rates of the bubbles. After this, the excess growth of the void fraction
field is limited to a rate that can be explained by the rise velocities of at least some
of the bubbles present within the cloud. A more detailed analysis of the velocity and
dispersion fields that provides an explanation is presented in the next section.

The cross-stream profiles of the attenuation parameter RMS are presented in figure
12. Measurement stations downstream of x/λ = 1.3 display a bimodal nature with
relatively broad, flat regions within the mixing layer. The ‘dip’ between the two
shallow peaks of these latter profiles occurs in the same location as the depleted
sublayer seen in the time-averaged flow visualizations (with forcing) and in the mean
attenuation profiles.
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Figure 13. Instantaneous visualization – forced flow (f = 2 Hz) using 90◦ scattered light. The tip
of the splitter plate is at the left edge of the image and the downstream extent is approximately
x/λ = 2.5.

3.4. Temporal evolution of dispersed phase

A clear indication of the process by which the depleted sublayer is created is presented
in figure 13 showing instantaneous 90◦ light scattering flow visualization. The image
extents are the same as those of figure 9. The bubble cloud is entrained by the fluid
entering the mixing region from the high-speed side into the cores of the coherent
vortical structures present in the mixing region – this entrainment mechanism has
been seen previously (Dimotakis 1987). At the same time, tongues of unladen fluid
are entrained into the shear layer from the upper free stream. The significant RMS
fluctuations of the attenuation measurements result from the passage of regions of
unladen fluid followed by regions laden with bubbles with void fractions nearly equal
to those in the lower free stream. As the relative motion of the phases smears the
difference in void fraction between these separate regions, the peak RMS values move
toward those of the laden free stream.

The depleted sublayer is caused by the subduction of unladen fluid under the
vortex cores, as shown by both the instantaneous flow visualization (figure 13) and
the superimposed conditionally-averaged carrier-phase velocity and void fraction
fields – figure 14. These averages are conditioned on the phase of the forcing function
– one period being broken into ten phase bins. To aid in the interpretation of these
measurements, two periods of the conditional averages are presented, and the mean
convective velocity of the carrier phase has been subtracted. In general, one can
identify three distinct regions associated with the conditionally-averaged (or phase-
averaged) velocity fields. At the x/λ = 1.88 measurement station, several distinct
topographies can be clearly seen: (i) the centre of the core of the Kelvin–Helmholtz
billow at (φ, y) = (120◦, 9 mm) (and again at (φ, y) = (480◦, 9 mm) for the other
period shown); (ii) the free stagnation point at (325◦, 10 mm); and (iii) the sinusoidal
perturbations in the vertical velocities that extend into the lower free stream.

The cores, with relatively high concentrations of bubbles entrained from the lower
free stream by the upwelling region which comprises their downstream edge, are
separated by depleted regions of unladen fluid entrained from the upper, slower
stream more or less into the region near the free stagnation point (i.e. the braid).
This unladen fluid is associated with the downwelling fluid on the upstream side
of the cores, and is subducted under the core when the Kelvin–Helmholtz billow
overturns. This results in the formation of the depleted sublayer adjacent to the
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Figure 14. Normalized conditionally-averaged attenuation parameter contours and carrier velocity
field for (a) x/λ = 1.25 and (b) x/λ = 1.88. The layer’s mean velocity of 17 cm s−1 has been
subtracted from the velocity field. Contour values range from 0 where there are no bubbles (in the
upper free stream) to 1.0 in the lower free-stream region.
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free-stream. Relative motion of the phases leads to homogenization of this pattern
which results from the initial fluid entrainment characteristics and the apparent loss
of coherence of the dispersed phase with respect to the large scales of the carrier flow.
Yet, even though the peak values of the inhomogeneities of the void fraction field
are substantially reduced after the flow has evolved for 2.5 wavelengths, the sublayer
associated with the dynamics of the large scales is becoming a more pronounced
feature.

The method by which a more homogeneous layer is formed overlaying the relatively
depleted sublayer beneath the cores is an effective ‘pumping’ of bubbles through the
mixing layer by the upwelling regions of the flow field. This can be readily seen in
the streamtraces of figure 15. These are streamlines, integrated through the measured
conditionally-averaged bubble velocity fields, which are also presented in the figures.
Note the greater rapidity with which the bubble velocity fields transport the dispersed
phase laterally compared to a similarly placed carrier-phase fluid element. As was seen
for the global growth of the void fraction field, this enhanced lateral dispersion does
not appear to scale simply with the relative rise velocities of the bubbles involved.
At x/λ = 1.25, although the smallest bubble size class is dispersed more rapidly than
the carrier phase and less than the other size classes, these larger sizes are dispersed
nearly equally. The number-average diameters in each size class are 27, 45 and 85 µm,
respectively. These have terminal rise velocities of 0.4, 1.1 and 4.0 mm s−1. The rise
velocity of the largest size class is four times that of the next largest size class, yet little
difference in the streamtraces is seen at x/λ = 1.25. This trend is further emphasized
at x/λ = 2.50 where the bubble streamtraces are nearly identical and are substantially
different from the dispersion of a fluid element.

Stable accumulation points may exist for buoyant particles near the cores of the
large vortical structures present in the mixing layer (Tio et al. 1993b; Tio & Lasheras
1993; Ruetsch & Meiburg 1993; Sene, Hunt & Thomas 1994). Although a stable
accumulation point is known to exist there, we see no apparent increase in the void
fraction within the cores of the carrier-phase structures relative to the free-stream void
fraction – figure 14. Take the relatively simple vorticity distribution of the modified
Rankine vortex as an approximate model of the vorticity in the Kelvin–Helmholtz
billows. In this case, the steady velocity field is purely in the azimuthal direction and
is given by

u = uθ =
2U0(r/R0)

1 + (r/R0)2
, (3.6)

where R0 is the characteristic dimension of the vortex and U0 is the value of uθ at
r = R0. For the simulation of a shear layer it is intuitive to take U0 = ∆U/2 where
∆U is the velocity difference between the streams. The appropriate lengthscale is the
wavelength, therefore R0 = λ – the approximate dimension of the large-scale vortical
structures. For steady flow, Du/Dt = u · ∇u, and we have

uθ =
∆U(r/λ)

1 + (r/λ)2
⇒ u · ∇u = u · ∇u|r = −1

λ

∆U2(r/λ)

[1 + (r/λ)]2
. (3.7)

Utilizing this simplified vorticity model, we consider the competition between the
buoyancy forces (resulting from both the static and dynamic pressure fields) and the
Stokes drag at the edge of an individual Kelvin–Helmholtz billow (i.e. at r = λ). These
terms are shown in the equation of motion for small spherical particles in a later part
of this paper – (4.17). At this location Du/Dt ≈ u ·∇u|r = −(∆U)2/4λ – representing a
pressure force acceleration pointing away from the core. Comparing the magnitude of
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Figure 15. For caption see facing page.
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the buoyancy force, FB = 4
3
πa3ρw|g| (where a is a bubble radius), with that of the drag

force, FD = 6πaµw(u− V ), gives an estimate for the bubbles’ terminal rise velocities,
VT . Again, note that previous studies (Detsch 1991; Clift, Grace & Weber 1978) have
shown that the quasi-steady Stokes drag law provides accurate estimates for bubbles
of the size distribution considered here. Likewise, comparing the magnitude of the
pressure (‘vortex capture’) force, FE = −mwDu/Dt = − 4

3
πa3ρw(∆U)2/4λ, with FD

(which, due to the sign change now points toward the centre of the vortex core), gives
an estimate for the bubbles’ terminal rise and entrainment velocities, VT and VE:

VT =
2

9

a2|g|
νw

and VE =
1

18

a2(∆U2)

νwλ
. (3.8)

The ratio between these two velocities provides a comparison of the likelihood
of bubble entrapment by the vortex through the action of the pressure force to the
likelihood of the bubble escaping due to rise velocity associated with the buoyancy
force. This ratio is

VE

VT
=

(∆U)2

4|g|λ . (3.9)

Note that this ratio is independent of the size of the bubbles and therefore the
relative tendency toward bubble entrapment and escaping through the pull of gravity
is uniform for all bubble size classes, though the actual entrainment velocity still
depends on the square of the diameter – as does the rise velocity. This result is
experimentally apparent in the bubble’s temporal dispersion by size, which indicates
no clear differentiation in the dispersion of the various size classes.

This entrainment parameter is insensitive to the orientation of the shear layer with
respect to gravity (e.g. when the high-speed stream is above or below the low-speed
stream). First, note that the entrainment parameter was developed by looking at a
cylindrically symmetric vortical flow. Also, when the entrainment parameter becomes
large (and therefore entrainment will occur), the dynamic pressure field associated
with the local vortex dominates the static pressure field associated with gravity.

This ratio is very similar to the Π parameter suggested previously (Sene et al.
1994) not as entrapment parameter, but as the ratio of inertial to buoyancy forces
– Π = ∆U2/2gx where x is the distance downstream from the splitter plate. They
chose another parameter, Γ = ∆U/VT as their entrapment parameter. However, Γ
varies inversely with the square of the diameter of the bubble. Although the pressure
force scales in this fashion, so does the terminal rise velocity leading to a uniform
entrapment ratio across all sizes. The fundamental competition between the buoyancy
force tending to make bubbles escape through gravitational settling and the pressure
force tending to entrap them near the vortex core would suggest that Π or the ratio
VE/VT is a more natural entrapment parameter. For large values of VE/VT , the
pressure force due to the vorticity field of the underlying flow dominates the influence
of gravity – leading to significant entrapment of bubbles.

Figure 15. Streamtraces integrated through phase-averaged carrier and bubble velocity fields for
each size class for (a) x/λ = 1.25 and (b) x/λ = 2.50. The vector fields presented are for the carrier
phase (green) and the intermediate bubble size class (cyan). The layer’s mean velocity of 17 cm s−1

has been subtracted from the velocity fields. The streamtrace labelled F has been integrated through
the phase-averaged velocity field of the fluid size class. Likewise, the streamtraces labelled I, II
and III have been integrated through the three bubble size class’ phase-averaged velocity fields,
respectively.
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For this study, VE/VT ≈ 0.02 and so we do not expect significant entrapment, due
to our limitation of using weak forcing. For the case of weak forcing (and therefore,
to some extent, for the naturally developing shear layer), the natural frequency along
with the convective velocity, U = 1

2
(U1 +U2), determine the typical lengthscale of the

Kelvin–Helmholtz billows. The Strouhal number of the most amplified frequency, fn,
is Stn = 0.032 = fnδIu0

/U (Monkewitz & Huerre 1982). Remembering that U/fn = λ,
we see then that λ = δI0/0.032. For the velocity difference of the shear layer in this
work, if the ratio of the entrainment to the rise velocities were to be approximately
equal at some locations within the flow field, the initial momentum thickness would
need to be δI0 = 40 µm! Alas, such a small boundary layer thickness is experimentally
impossible to achieve. Were the actual momentum thickness that the channel was
able to produce not to change substantially, the required velocity difference would be
∆U ≈ 2 m s−1 to achieve a value of VE/VT ≈ 1 somewhere within the flow field. This
is an order of magnitude greater than that achievable in our facility.

4. Interface energy coupling
4.1. The form of the interphase coupling

The analysis of two-phase flow problems is generally complicated by the dissimilar
properties of the phases changing across thin interfaces, and by the highly complex
boundary geometries. The general approach and formulation of the fundamental
equations of motion depend upon the specific flow configuration being studied.
Although some relatively general sets of equations exist, there is no formulation that
could be considered applicable to all regimes of two-phase flows. Here we use a
simple model of the interphase coupling terms for an isothermal incompressible and
insoluble cloud of microbubbles in a turbulent flow to gain some understanding of
the influence of the dispersed phase on the energetics of the flow.

For the specific case of bubbles embedded within a liquid carrier phase, the assump-
tion of incompressibility must be examined more closely, since it must be assumed
that hydrostatic or hydrodynamic pressure changes (and the resulting bubble size
fluctuations) are not significant enough to force a relaxation of the incompressibility
constraint. In this study, the maximum bubble size variations due to the hydrostatic
pressure field is ≈ 0.6% of the bubble’s diameter with those variations due to the
hydrodynamic pressure field being smaller.

4.2. General dilute dispersed particulates

The volume-averaged mesoscale momentum equation for the carrier phase in the
limit of a dilute dispersed system is (Rightley 1995; Druzhinin & Elghobashi 1998)

ρw
D

Dt
(uw) = ∇ · Tw + ρwg+ F w, (4.1)

where the interphase transfer integral is written as

F w =
1

V

∫
S

Tw · n dS. (4.2)

Here, T is the total stress tensor including both the pressure and viscous stresses.
Similar equations also hold for the dispersed phase. Closure comes when F can be
expressed in terms of mesoscale quantities.

The equation of motion of a small spherical particle or bubble can be written as
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(Maxey & Riley 1983; Lovalenti & Brady 1993; Mei & Adrian 1992)

mb
dub
dt

= (mb − mw)g+ mw
Duw
Dt
− mw

2

(
dub
dt
− Duw

Dt

)
− 3πDbµw(ub − uw)

− 3
2
D2
b(πρwµw)1/2

∫ t

0

(t− τ)−1/2 ∂(ub − uw)

∂τ
dτ (4.3)

where the subscript w denotes the carrier phase, the subscript b denotes the dispersed
phase, and mw = 1

6
πD3

b is the mass of the carrier phase displaced by the particle or
bubble.

Equation (4.3) applies to creeping flow around the individual particles or bubbles
with a non-uniform far field. Although this means that the influence of a particle is
felt throughout the flow, with the interparticle spacing discussed earlier, the influence
of one particle on another is negligible. The maximum Reynolds number associated
with the bubbles in this study rising at their terminal rise velocities is less than 0.1.
Since the region investigated here is still prior to the mixing transition in the shear
layer, the smallest scales of the flow are still large compared to the size of the bubbles
themselves. This also is a requirement for the applicability of (4.3).

The decomposition used in formulating (4.3) can be applied in determining the
form of the interphase momentum transfer integral for dilute, dispersed systems. The
complete flow field external to the sphere is decomposed as the sum of that due to
the local carrier-phase flow field in the absence of the particle and that due to the
disturbance flow resulting from the relative motion of the particle and the carrier
phase, ũ(x, t) = u(x, t) + u′(x, t). The decomposition applies only on the microscale
since the knowledge of the specific flow around each dispersed-phase element is lost
on the mesoscale. The sum of the resulting decomposed forces must balance the
particle inertia, and therefore

mb
dub
dt

= f + f′, (4.4)

where the lowercase f is used to denote a single particle, as opposed to the mesoscale-
averaged interphase momentum transfer force, F . As was done in deriving (4.3), the
forces acting on the sphere can be determined as integrals of the stress tensor of the
decomposed flow fields over the surface normals (integrals which are of the same
form as the interphase momentum transfer integral, (4.2)) or can be converted to
volume integrals through Gauss’ theorem:

f =

∫
V

∇T dV and f′ =

∫
V

∇T ′ dV . (4.5)

In the limit of dilute dispersed systems, the influence of one particle on another
is limited to the cumulative effects on the underlying flow, and the influence of the
dispersed phase on the continuous phase is relatively weak (a situation where the
restriction on the maximum value of the void fraction, (1.1), proves beneficial). In this
limit, to the first approximation, the ambient carrier-phase flow field in the region
near an individual particle is governed by the undisturbed momentum equation

ρw
Duw
Dt

= ∇Tw + ρwg = −∇pw + µw∇2uw + ρwg. (4.6)

Since the characteristic length of the dispersed phase must also be much smaller
than the characteristic lengths for changes in the underlying flow (again from the
restriction of scales (1.1)), the flow field can be considered constant over the sphere,
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and the integration required in (4.5) over the volume of a single particle gives

f = mw(Duw/Dt− g). (4.7)

The force acting upon the spherical inclusion within the flow field due to the ambient
flow, f, is therefore already represented in the equation of motion of the carrier phase.
Therefore, to balance the forces acting on the carrier phase at the location of a particle,
the mesoscale equation of motion in the weak two-way coupling limit must include a
term resulting from the particle’s disturbance flow. This can be written as (Rightley
1995)

ρ
Duw
Dt

= −∇pw + µw∇2uw + ρwg− F ′. (4.8)

where the mesoscale-averaged momentum transfer integral is

F ′ =
1

V

∫
V

f′(x)δ(x− xi) dx =
1

V

N∑
i=1

f′(xi) (4.9)

for xi ∈ V and N the number of particles within V . Here δ(x − xi) isolates the
momentum source resulting from the balance of forces on an individual particle –
(4.4) – at each particle location x = xi.

The form of f′ in (4.9) can be obtained from f through (4.4), (4.3), and (4.7) and is

f′ = mbg− mw

2

(
dub
dt
− Duw

Dt

)
− 3πDbµw(ub − uw)

− 3
2
D2
b(πρwµw)1/2

∫ t

0

(t− τ)−1/2 ∂(ub − uw)

∂τ
dτ. (4.10)

Other than the single term associated with gravity, all of the terms in the expression
for f′ result from the relative motion of the particle with respect to the carrier phase.

In this isothermal system, the energy budget can be analysed solely in the context
of mechanical energy. Performing the inner product of uw with (4.1) provides a
conservation equation for the EK of the carrier,

1
2
ρw

D

Dt
u2
w = −uw · ∇Tw + ρwuw · g− uw · F ′. (4.11)

The influence of the particles on the EK budget of the underlying flow has the form
of the inner product of the force (from the disturbance flow) on the particle and the
velocity of the carrier phase. The rate of energy transferred to any body must be the
sum of the forces acting upon it dotted with its velocity (i.e. the power transfer to
the particle is (f+ f′) · ub). Note that the power input to the carrier-phase fluid on the
mesoscale is not necessarily equal to the power lost by the particle on the microscale
or vice versa.

The relative motion of the particle with respect to the underlying flow field will
generate motion on the microscale of the bubble – the disturbance flow motion
associated with f′. This microscale motion represents energy lost by the carrier
phase to scales much smaller than the mesoscale. Therefore, the total power lost by
the carrier phase in the mesoscale is the sum of the power gained by the particle
(f + f′) · ub and the power input into the microscales of the carrier phase due to the
disturbance flow.

Thus we see that there are three contributions to the energy input into the carrier
phase on the mesoscale. The first is the actual power transferred to the particle as
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EK or EP –
∑
f · ub = (f + f′) · ub. The second, f · ub, represents the conversion of

EP to EK and vice versa within the carrier phase through the work of the buoyancy
and pressure forces. The third, −(uw − ub) · f′, represents the addition of EK to the
carrier phase on scales much smaller than the mesoscale through the action of the
disturbance flow of the particle. This final contribution exists whenever the dispersed
and carrier phases possess a relative motion. For the case of heavy particles in a
gas (for instance, a spray), the drag term alone often balances the particle inertia
(Lázaro 1989; Williams 1960). In such a case, the power transferred to the particle
is well defined and the work of the buoyancy forces can be neglected, and since f′
depends linearly on the relative velocity between the phases, if there is sufficient slip
for f′ to become appreciable, the loss of energy to the microscales (−(uw − ub) · f′)
must also be important. Likewise, for a bubble rising in a still liquid, a ‘significant’
disturbance is created in the liquid (relative to the bubble’s mass and therefore its
energy). Consider the wake of a 1 cm diameter bubble rising due to gravity. In this
case, the wake will possess significant EK , yet the bubble as it rises neither possesses
nor gains energy, because it is essentially massless. Realizing that the pressure field
driving the conversion from EP to EK may result from either static or dynamic
pressure fields, we see that f · ub, where f is expressed in (4.7), is the correct form for
the conversion of EP into EK at the mesoscale of the carrier phase.

4.3. Interphase coupling for microbubbles in water

Further simplifications to the formulation for dilute dispersed two-phase systems exist
for bubbles. For the case of massless particles where mw = 1

6
πD3

bρw � mb = 1
6
πD3

bρb,
inertia of the particle is negligible and (4.4) becomes

0 = f + f′ ⇒ f = −f′. (4.12)

The momentum equation for the carrier phase, (4.8), under the influence of an
individual bubble, can then be written as

ρw
Duw
Dt

= −∇pw + µw∇2uw + ρwg+ F , (4.13)

where

F =
1

V

∫
V

f(x)δ(x− xi) dx =
1

V

N∑
i=1

f(xi) (4.14)

for xi ∈ V . Using (4.7), we have

F = ρwαb(Duw/Dt− g), (4.15)

where ρwαb = (1/V )
∑
mw(xi) is the mass of water displaced by the bubble cloud per

unit volume. Therefore, (4.13) can be written equivalently as

ρw
Duw
Dt

= −∇pw + µw∇2uw + ρwg+ ρwαb

(
Duw
Dt
− g
)
. (4.16)

This result for the mesoscale-averaged momentum equation of the carrier phase is
similar to that given for a Lagrangian analysis of the influence of individual bubbles
on the carrier phase (Maxey, Chang & Wang 1994). The application of mesoscale
averaging to that expression is straightforward, resulting in an equation of motion
identical to (4.16). With the exception of the influence of the dynamic pressure term
Duw/Dt on the interphase momentum transfer integral, this expression resembles
that of a Boussinesq approximation for buoyancy-driven variable-density flow fields
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(Turner 1973). Previous work involving buoyancy effects of particles on shear flows
(Ruetsch & Meiburg 1994; Lumley 1976) has used formulations equivalent to the
Boussinesq approximation and has neglected the influence of the dynamic pressure
contribution.

It is also possible to understand the equation of motion of small bubbles, (4.3),
as a balance between the forces due to the ambient flow field and those due to the
disturbance flow,

mw

(
g− Duw

Dt

)
= 3πDbµw(ub − uw) +

mw

2

(
dub
dt
− Duw

Dt

)
+ 3

2
D2
b(πρwµw)1/2

∫ t

0

(t− τ)−1/2 ∂(ub − uw)

∂τ
dτ. (4.17)

The form for the quasi-steady drag term in (4.17) is that for a rigid sphere in the limit
of zero Reynolds number (Stokes flow). Analysis of fluid spheres in the Stokes limit
suggests the need for a different numerical coefficient due to the circulation within the
sphere and motion of the interface. However, work on bubbles rising in water under
controlled circumstances suggests that, unless extraordinary measures are taken to
purify the water, microbubbles will behave as rigid spheres due to the accumulation
of surfactants on the interface (Detsch 1991).

The appropriate form of the pressure term has been debated (Corrsin & Lumley
1956), and the appropriate form of the Bassett history term is under discussion as
well (Mei, Adrian & Hanratty 1991). It is important to note that uncertainty in the
form of f′ is not critical to this analysis due to its simple relationship with f for
a bubble. The simple form of f allows it to be measured and yet represent all of
the contributions from the disturbance flow field. For instance, the specific form of
f′ may include a lift term (Auton 1987; Saffman 1985; Mei 1992; Sridhar & Katz
1993), the exact expression of which is still uncertain; however, measuring f, we still
measure the influence of any unknown lift force.

4.4. Energy

Studies of one-way coupling of microbubbles in free-shear layers have produced
insight into the relevant physical processes (see Ruetsch & Meiburg 1993; Tio et
al. 1993b; Sene et al. 1994, for example). Such studies have relied upon Lagrangian
particle tracking techniques – using some form of equation of motion for the individual
bubbles similar to (4.17). Substantially greater complexity is involved in two-way
coupling studies due to the fact that, not only must the dispersion process be correctly
modelled, the momentum and energy interchange across the interface must also be
taken into account. To date, the majority of such work has utilized moment-method
closures (for example, Viollet & Simonin 1994; Elghobashi & Abou-Arab 1983).
Although studies combining particle tracking and two-way coupling effects are gaining
prominence (Ruetsch & Meiburg 1994; Elghobashi & Truesdell 1993; Druzhinin &
Elghobashi 1998; Squires & Eaton 1990), these have been limited to dispersed phases
typified by small characteristic dimensions relative to flow lengthscales and to low
overall void fractions.

A massless dispersed phase can possess neither EP nor EK . However, a bubble cloud
introduced into a quiescent tank of water will rise and induce motion of the carrier
phase (water) – even large-scale recirculations with characteristic lengths much greater
than the dimensions of the bubbles themselves. Therefore, interphase momentum and
EK effects must exist, but must be represented as a redistribution of energy from EP
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to EK within the carrier phase. As bubbles ‘rise’ (either upward through the influence
of the hydrostatic pressure field or toward low-pressure regions due to the dynamic
pressure field) the carrier phase effectively ‘falls’ – reducing the EP of this phase and
therefore (by conservation of total energy) increasing its EK .

From (4.16) and (4.11), the mesoscale interphase momentum transfer integral and
the interphase EK redistribution can be written as

F = ρwαb(Duw/Dt− g) and F · uw = ρwαb(Duw/Dt− g) · uw. (4.18)

Simultaneous accurate measurements of both the bubble dispersion field and the
carrier-phase velocity field are beyond the scope of current practical instrumentation.
For this reason, we limit ourselves to the influence of the large scales through the use
of conditional averaging. These conditional averages will not include the contribution
resulting from scales smaller than the Kelvin–Helmholtz billows of the flow or void-
fraction fields. Because of this limitation and the small size of the bubbles in this
study, we cannot do any more than speculate as to the scales at which energy is
generated or removed from the mesoscale. It should suffice to say that, for the energy
transfer associated with a microbubble, the scale of interaction is much smaller than
the mesoscale.

The most significant fluctuations of both the void fraction and carrier-phase velocity
fields are those resulting from these large scales in the developing region of the mixing
layer. Downstream development of the flow field leads to diminishing fluctuations
of the void fraction field at the forcing frequency. This is due to a smearing of the
initially inhomogeneous entrainment into the shear layer – the significant influence of
the large scales farther downstream is seen in the growing prominence of the depleted
sublayer. Only the influence of small-scale variations of the dynamic pressure field is
ignored by the results presented here for the energy redistribution within the carrier
phase due to the presence of the bubble cloud.

An estimate of the contribution of the local fluid acceleration to the total en-
ergy redistribution in this flow field requires Lagrangian information following fluid
particles. The conditionally-averaged velocity field of the carrier phase (presented in
figure 14) can be used to provide an estimate of this local carrier phase acceleration,
Duw/Dt, from the convective terms of the substantial derivative alone – that is, let
Duw/Dt ≈ uw · ∇uw . This first requires converting the phase angle of each discrete
conditional-averaging bin into streamwise distances then numerically differentiating
the data to determine ∇uw .

The computed fluid accelerations are relatively smooth in figure 16. The pressure
field results in an acceleration of the fluid toward the core of the large vortical structure
at (φ, y) = (350◦, 5 mm), and, in general, away from the free-stagnation point – i.e.
(φ, y) = (200◦, 5 mm). The maximum magnitudes of these accelerations associated
with the large scales can be seen to be only 10% of the acceleration due to gravity.
That these accelerations are small compared to gravity is of no surprise since the
vorticity distribution of the large scales is relatively diffuse (which is why VE/VT � 1).
In fact, over 90% of the energy redistribution comes from forces acting in the vertical
direction – even though the carrier-phase velocities in this direction are substantially
smaller than in the streamwise direction. Therefore, the use of these computed values
for the dynamic pressure field will introduce a relatively small perturbation on the
interphase energy redistribution associated solely with gravitational effects.

Estimated values of the interface energy transfer integral, (4.18), within the carrier
phase resulting from the entire bubble cloud are presented in figure 17 for the x/λ =
1.25 and 2.50 measurement stations. The upwelling region downstream of each vortex
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Figure 16. Local acceleration, Duw/Dt ≈ uw · ∇uw , for x/λ = 1.25 for the carrier phase velocity
field presented in figure 14.

core produces a large positive peak representing EK generation within the carrier
phase, resulting from an enhancement of the vertical settling of the bubble cloud
within this region. The downwelling region upstream of the core represents a region
of EK destruction (where the EP of the carrier phase is increasing) due to downward
bubble motions. The free stagnation point is consistently situated in the region of
transition between EK destruction and generation – where there is essentially no
energy redistribution.

At x/λ = 1.25, in the region above and downstream of the free stagnation point,
a well developed downwelling is apparent, extending vertically somewhat beyond
y = 15 mm. However, in this area nearly zero energy redistribution is present, due
to the presence of a still well-defined downwelling tongue of unladen fluid from the
upper layer. The characteristics of the initial entrainment of the bubble cloud into the
mixing region significantly impacts the vertical extent of the EK destruction regions,
more so than the adjacent EK generation region associated with the upwelling of fluid
from the lower stream.

The locations of the peaks of the EK destruction regions move downward as
the flow progresses downstream because of this impact of the initial entrainment
characteristics on these regions. This is due to the fact that the well-defined regions
of downwelling are confined more and more to positions beneath the vortex core as
the flow evolves. Because of this, and the homogenization of the void fraction field,
the EK destruction peak at the x/λ = 2.50 station is located within the middle of the
depleted sublayer noted in the analysis of the time-averaged attenuation profiles. The
shape, location and peak values of the EK generation regions on the downstream side
of the Kelvin–Helmholtz billows remain similar to each other as the flow progresses
downstream – except in their lateral extent, which grows as the mixing layer evolves.

The regions of EK generation both occupy greater regions of the flow field and
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Figure 17. Phase-averaged total energy redistribution, ρwαb(Duw/Dt− g) · uw , contours (mW m−3)
and carrier-phase velocity field for (a) x/λ = 1.25 and (b) x/λ = 2.50. The layer’s mean streamwise
velocity of 17 cm s−1 has been subtracted from the velocity fields.
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Figure 18. Net energy redistribution per period computed by integrating the total energy redis-
tribution over one period for each measured cross-stream position: ——–, x/λ = 1.25; −− −−,
x/λ = 1.88; and — · —, x/λ = 2.5.

have peak values nearly three times those of the EK destruction. The fact that
EK generation dominates EK destruction on average in the flow is apparent when
averaging the energy redistribution over one period, which is presented in figure
18. This averaging estimates the net time-averaged energy redistribution within the
carrier phase due to the presence of the bubble cloud. Relatively early in the flow
evolution (at x/λ = 1.25), while the initial inhomogeneities associated with the fluid
entrainment processes are well-defined and after the enhanced bubble dispersion
present from 0.63 < x/λ < 1.88 has been allowed to evolve for only a short distance,
the net energy redistribution displays a prominently peaked profile. This peak value
occurs beneath the cross-stream position of the core of the Kelvin–Helmholtz billow.
The rapid increase from the free stream is due to the development of the cross-stream
velocity component and the fact that a significant void fraction of bubbles is present
near to the lower free stream. The decline in net energy transfer in the region above
y = 0 mm results from both a lower average void fraction in this region as well as
the existence of the peak of EK destruction located at y ≈ 10 mm (see figure 17).
The peak of the net energy redistribution is also somewhat below the cross-stream
position of the peak value of RMS and is only about one-quarter of the way into the
mixing region as evidenced by the mean streamwise velocity profiles.

Due to the downward evolution of the EK destruction regions, the strong peak in
the net energy redistribution has eroded by the x/λ = 1.88 measurement location. In
fact, by the x/λ = 2.50 station, the cumulative effects of this downward movement
along with the growth of the depleted sublayer adjacent to the lower free stream
result in a local minimum in the net energy redistribution well below the core of the
vortical structures.

The contribution to the overall energy redistribution of each size class is presented
in figure 19. Because of the cubic dependence of displaced volume on bubble diameter,
the smallest size class contributes very little to the total, even though it is the most
numerous of the size classes. The contribution of the largest size class is confined to
somewhat larger cross-stream values than that of the intermediate size class.

For bubbles (where the net force must vanish due to the lack of inertia) the balance
of forces enables the computation of the carrier-phase energy redistribution solely
from the force on the bubble resulting from the ambient flow field. From (4.8), the
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Figure 19. Contours (mW m−3) showing the influence of each size class on total energy redistribution
for x/λ = 1.25 for (a) size class 1: Db ≈ 27 µm, (b) size class 2: Db ≈ 44 µm, and (c) size class 3:

Db ≈ 81 µm.
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Figure 20. Energy redistribution contours resulting from the drag force (mW m−3),
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2
i )(ui − uw) · uw , and the carrier-phase velocity field for x/λ = 1.25. The layer’s mean

streamwise velocity of 17 cm s−1 has been subtracted from the velocity field.

form of the interphase momentum transfer integral comes from the force resulting
from the disturbance flow around the bubble (i.e. from the relative motion between
the phases). From (4.10), we see that this disturbance flow force is composed of
contributions from the quasi-steady Stokes drag, the added mass and Basset history
forces. In this section, we consider only the contribution of the quasi-steady drag
force to the overall energy redistribution. The form of this term for an individual
bubble is

f′Drag · uw = 3πDbµw(ub − uw) · uw. (4.19)

The mesoscale-averaged value for this contribution is expressed as a summation
over all bubbles in the averaging volume. We estimate the number of bubbles at
each cross-stream position and phase angle through the local void fraction, volume
fraction of the given size class and the average bubble size of that class:

F ′Drag · uw = 3NiπDiµw(ui − uw) · uw =
2αiµw

D2
i

(ui − uw) · uw. (4.20)

Here the number of bubbles of size class i per unit volume, Ni, has been estimated
by taking Ni = αi/(

1
6
πD3

i ) and Di = D30i . For a bubble rising in a still fluid (at its
terminal rise velocity), the rate of conversion of EP to EK within the carrier fluid
(f · uw) must be equal to that due to the drag term alone (3πDbµw(ub − uw) · uw) due
to the balance between the buoyancy and drag forces – all other terms vanishing.
However, this one-to-one correspondence of the total energy redistribution and that
due to the drag term alone does not exist in more complicated flow situations where
other forces resulting from the disturbance flow can become significant.
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The resulting estimate of the contribution of the quasi-steady drag term alone is
presented in figure 20. Comparing with figure 17, we see that the peak values of the
total energy redistribution and that resulting from the drag force alone are of similar
magnitudes. However, the peak associated with EK energy generation due to the drag
term is significantly smaller in extent than the peak of total energy redistribution. It
also can account for only the uppermost portion of the total EK generation region.
This result suggests that the terms in the equation of motion of the individual bubbles
resulting from the disturbance flow are not dominated by the quasi-steady drag.

The contribution to the energy redistribution resulting from the quasi-steady drag
force alone for each size class is presented in figure 21. The most striking feature is
that the largest contribution to the total drag force estimate comes from the smallest
size class. From (4.20), we see that the dependence of Ni is inversely proportional
to D2

i and that the drag contribution of each size class goes as Ni. Therefore, even
though we have seen that the contribution from the drag term accounts for the total
energy redistribution in some regions of the flow field, we see that this holds only for
the smallest size class because of its much greater population density.

5. Conclusions
The dispersion field of a dilute dispersed microbubble cloud interacting with a

perturbed planar free-shear layer – as well as the interphase momentum and energy
transfer – has been examined in detail experimentally for the first time. This study
has investigated the role of the large, coherent structures known to dominate the
entrainment and mixing within the shear layer in the dispersion and interphase
energy transfer processes.

The evolution of the bubble cloud (i.e. void fraction) dispersion field is dominated by
the influence of the large-scale coherent structures of the flow. The initial development
is characterized by the entrainment processes of these large scales with significant
inhomogeneities occurring due to the movement of high- and low-speed fluid into the
layer. As this pattern evolves downstream and is smeared away by the relative motion
of the two phases, a depleted sublayer forms in the void fraction field, resulting from
the overturning of the large scales. At intermediate downstream distances, the lateral
spreading of the dispersion field is greater than that of the streamwise velocity profiles
superimposed with the rise rates of the individual bubbles. This region is followed by
one in which the lateral spreading can be explained simply by the growth rate of the
carrier phase together with the individual bubble rise rates. Little increase in the void
fraction of bubbles at the stable accumulation point near the cores of the coherent
structures is found, along with no segregation of the bubbles by size. The former
effect is due to the relatively diffuse concentration of vorticity within the large scales.

This study has been restricted to relatively low free-stream void fractions in a flow
without localized regions of high void fractions. This has allowed us to analyse the
problem as a dilute dispersed flow, as well as allowing us to bring a powerful set of
optical diagnostics to bear in interrogating the flow. For regions of high void fractions,
the analysis as well as the instrumentation used in this study would be inadequate.

An analysis in the limit of such a dilute dispersed cloud of microbubbles, applied
to the volume-averaged (i.e. mesoscale) equations of motion of the carrier phase,
has provided the form of the interphase momentum transfer integral, and hence the
EK transfer terms. The simplifications for a massless dispersed phase (bubbles) have
resulted in a form of the interphase momentum transfer integral that can be measured
experimentally – which includes the cumulative influence of all terms in the equation
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Figure 21. Contours (mW m−3) showing the influence of each size class on energy redistribution
due to quasi-steady drag force for x/λ = 1.25 for (a) size class 1: Db ≈ 27 µm, (b) size class 2:

Db ≈ 44 µm, and (c) size class 3: Db ≈ 81 µm.
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of motion of the bubble resulting from its relative motion with respect to the carrier
phase.

The EK redistribution within the carrier phase due to the presence of the bubble
cloud occurs inhomogeneously across the mixing layer. Large peaks of EK generation
are associated with the upwelling regions downstream of the vortex cores. These
peak values are typically located slightly beneath the peak values of the streamwise
velocity RMS profiles. Weaker peaks of EK destruction are associated with the
downwelling regions upstream of the vortex cores. The locations of these latter peaks
move downward from above the cross-stream of the vortex core to below it as the
flow evolves downstream. The EK generation regions are found to dominate at every
downstream location, with the mean profiles of the net EK generation per period
initially peaking well beneath the region of highest carrier-phase velocity RMS.
Downstream evolution of these profiles is characterized by the enhanced spreading
of the void fraction field and the strengthening of the depleted sublayer adjacent to
the lower free stream. The contribution of the quasi-steady drag term to the overall
energy redistribution is seen to be dominant in only a limited region of the flow
field, showing the well-documented importance of the other terms of the equation of
motion of massless particles.
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Martinez. This work was supported by the ONR under grant number #N00014-91-
J-1252.
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